
INSTRUCTION MANUAL FOR JFDTD2D/3D (v2.00)

Jeffrey M. McMahon

Department of Chemistry, Northwestern University, Evanston, IL 60208

Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439

Copyright (c) 2006 - 2009 Jeffrey M. McMahon. Permission is granted to copy, distribute

and/or modify this document under the terms of the GNU Free Documentation License,

Version 1.2 or any later version published by the Free Software Foundation; with no Invariant

Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included

in the section entitled ”GNU Free Documentation License”.

TABLE OF CONTENTS

I. Introduction

II. Simulation

II A. System requirements

II B. Quick instructions

II C. Compilation

IIC 1. Unix/Linux comilation

IIC 2. Windows compilation

IID. Running

II D 1. Running JFDTD3D

II D 2. Running JFDTD3D

III. Structure setup

IIIA. Defining structure geometry

III B. Defining structure material

III B 1. Frequency independent materials

III B 2. Frequency dependent materials

IV. Parameters setup

IVA. Quick instructions

IVB. Output parameters

1

IVC. Feld output setup

V. Parameters Glossary

VA. Simulation parameters

VB. Output parameters

VI. Troubleshooting / Common Issues

VII. Changelog

VII A. Changelog v1.0

VII B. Changelog v2.0

VII C. Changelog v3.0

I. INTRODUCTION

JFDTD2D/3D are finite-difference time-domain (FDTD) method electromagnetics codes.

JFDTD3D is a 3D version that can run in parallel (multiple CPUs) using the MPI library,

and JFDTD2D is a serial 2D version. The code is designed to study scattering from isolated

structures in open–regions and scattering from or transmission through periodic structures

(e.g. arrays of particles or modulations on films). For all simulations, the incident field (by

default) is a Gaussian damped sinusoidal pulse that is normal incident into the computa-

tional domain. Schematic diagrams of computational domains for 2D (JFDTD2D) and 3D

(JFDTD3D) simulations are shown in Figs. 1 and 2. For the quick instructions on how to

perform a simulation see Section II B.

II. SIMULATION

A. System Requirements

- C++ compiler and linker (e.g. g++) - JSCIENCE library (download from

http://www.thecomputationalphysicist.com) - (3D) Some version of MPI (must be able to

find mpi.h) - (3D) MPI capable C++ compiler and linker (e.g. mpicxx)

B. Quick Instructions

Running a simulation consists of 4 steps:

2

FIG. 1: Schematic diagram of computational domain for JFDTD2D.

1. Define the custom structure (and materials) (see Section III) – in the file ”structure.cpp”.

2. (Re)compile JSCIENCE (if any files were changed) and JFDTD2D/3D (see Section II C).

3. Set the parameters (see Section IV) – in the file ”parameters”.

4. Run the simulation (see Section IID).

C. Compilation

1. Linux/Unix

1. Download the JSCIENCE package (e.g. jscience.tar) and extract it. You should be left

with a folder /jscience.

2. Compile the JSCIENCE library by going into the folder and using the command (¿make

clean) followed by (¿make CC=g++) – or any other C++ (or MPI C++) compiler you

3

FIG. 2: Schematic diagram of computational domain for JFDTD3D.

wish to use. This will compile all of the files in the folder into object (.o) files.

3. You probably already have the JFDTD package downloaded (since you are reading this

manual), if not download it (e.g. jfdtd2d.tar) and extract it. You should be left with a folder

/jfdtd2d or /jfdtd3d.

4. Go into the JFDTD directory and open the Makefile. Make sure the path to JSCIENCE

(from your current location) is correct. Then exit.

5. Make JFDTD using the command (¿make clean results) followed by (¿make clean)

followed by (¿make CC=icc CCL=icpc) or any other C++ (or MPI C++) compiler and

linker, respectively. If all goes well, you should be left with the executable jfdtd2d or jfdtd3d.

2. Windows

Currently, there is no official support for Windows. However, the compilation should

be straightforward. First read the instructions for Linux to get an idea of the compilation

procedure. Then in Windows you should (roughly speaking) compile each of the JSCIENCE

files individually into .o files. Then you should compile the files in JFDTD into .o files.

4

Then link the appropriate files together. (To see what files should be compiled, and how

they should be linked, see the Makefiles in both JSCIENCE and JFDTD).

If you get the programs running on Windows, and have any helpful hints, please let

me know at jeffrey-mcmahon@northwestern.edu and I can add it to future versions of this

manual.

D. Running

1. JFDTD2D

Running JFDTD2D is accomplished by simply running the executable jfdtd2d. From the

command line use (¿.jfdtd2d).

2. JFDTD3D

Running JFDTD3D must be accomplished using mpirun on the executable jfdtd2d. From

the command line use (¿mpirun -np # jfdtd3d), where # is the number of processors using

to run JFDTD3D (this number must be equal to the number specified in “parameters”).

III. STRUCTURE

The default structure is vacuum. To define a custom structure you must modify the file

“structure.cpp” in the JFDTD2D/3D directory (see Section III A). Note that a recompi-

lation of JFDTD will be necessary after this step. For structures composed of frequency

dependent materials (e.g. Ag or Au), you must also modify the file “jmaterials.cpp” in the

JSCIENCE directory (see Section III B) (unless the desired material has already been defined

by default – such as Ag and Au). Note that after this a recompilation of both JSCIENCE

and JFDTD will be necessary.

A. Structure Geometry

In the JFDTD2D/3D directory there is a file called “structure.cpp”. Inside this file there

is a single subroutine “get structure()” which takes in the parameters (xpos, ypos, zpos,

5

mat num, mat eps, mat mu). To specify a structure, you must write an algorithm that

specifies the material (using the variables mat num, mat eps, and mat mu – see Section

III B) at a general position in the computational domain (xpos, ypos, zpos). For example,

suppose we are trying to model a sphere of radius r centered at (x0, y0, z0). The C++

pseudocode for this to model this would be:

if (sqrt((xpos - x0)*(xpos - x0) + ...) < r) { then assign sphere material }

(Be careful to place the structure appropriately so that it does not interfere with other

portions of the computational domain, e.g. PML, see Figs. 1 and 2.)

B. Structure Material

The material is specified using the variables mat num, mat eps, and mat mu that are

sent to “get structure()” – see below. Some useful constants from JSCIENCE to know

are “MU0” and “EPS0”, which are the permeability (µ) and permittivity (ε) values of the

vacuum. ω dependent dielectric models are defined in the file “jmaterials.cpp” in JSCIENCE

– see below.

mat mu is the material permeability. For nonmagnetic materials this should be set (or left

at) MU0 (the vacuum value). (Note that it is not currently possible to have a ω dependent

µ). mat num and mat eps specify the material ε. mat num is a flag that specifies if the

material ω dependent.

1. ω Independent Materials

For no ω dependence, mat num should be set to 99. In this case, (constant) ε is set using

mat eps (e.g. 2.25*EPS0 for glass – i.e. a refractive index of 1.5).

Returning to our example of a sphere of radius r centered at (x0, y0, z0), for a glass

sphere, the the C++ pseudocode is:

mat mu = MU0;

if (sqrt((xpos - x0)*(xpos - x0) + ...) < r) { mat num = 99; mat eps = 2.25*EPS0; }

6

2. ω Dependent Materials

For ω dependet materials, the dielectric model in Eq. (zzz) is used and implemented with

the FDTD method as described in Refs.? . These dielectric models are defined in the file

“jmaterials.h” and “jmaterials.cpp” in the JSCIENCE package (probably the only file you

would ever need to modify yourself in JSCIENCE).

Returning to our example of a sphere of radius r centered at (x0, y0, z0), for a Au sphere

(assuming this material number is 0), the the C++ pseudocode is:

mat mu = MU0;

if (sqrt((xpos - x0)*(xpos - x0) + ...) < r) { mat num = 0; mat eps =

EPS0*d2l inf[mat num]; }

IV. PARAMETERS

The parameters for a simulation are set entirely in the file “parameters” in the main

JFDTD directory. (Note that it is not necessary to recompile anything after changing the

“parameters” file.) A brief definition of all the parameters can be found in the glossary;

Section V.

A. Simulation / Quick Instructions

The following instructions should be give you a brief overview of how to do this. (Note

that a lot of the default parameters will probably suit 90% of your simulations, but read all

instructions anyway.) These steps are all that is necessary to run a JFDTD simulation. Of

course, you will also want to obtain some output from your simulation, and this is discussed

in Section IV B.

1) Set up the main computational domain using grid xsize, grid ysize, and grid zsize to set

the size and grid dx, grid dy, and grid dz to set the grid spacing. Often you will know the

appropriate grid sizes to use, but the grid–spacings may take some trial and error. (You

want to use the smallest grid sizes with largest grid spacings spacings necessary to converge

the results).

At this point, also set periodicitiy using ixperiodic, iyperiodic, izperiodic.

7

(In 3D) Finally, (and based on the grid–sizes and grid–spacing) set the desired number

of processors using mpi nxprocs, mpi nyprocs, and mpi nzprocs. [This will depend on the

machine(s) that you are running the simulation on, and will also take some trial and error.]

2) (The default values of parameters in this step will probably suit 90% of your simulations,

so do not change them unless you know what you are doing.) Next setup the CPML us-

ing the parameters cpml layers, cpml epsr, cpml mur, cpml kappamax, cpml sigmamax coeff,

cpml alphamax, cpml m, and cpml ma. Note that PML is defined by the number of lay-

ers (cpml layers), and so will comprise a portion of the computational domain of size

cpml layers*grid dz (in the z–direction, for example).

3) (The default values of parameters in this step will probably suit 90% of your simulations,

so do not change them unless you know what you are doing.) Set the simulated time for

your simulation using time total and time courant factor. Note that the default value of

time total = 150e-15 s should be plenty of time to give accurate Fourier–transformed fields,

and time courant factor should never be changed from 0.95.

4) (Some of the default values of parameters in this step will probably suit 90% of your

simulations, so do not change them unless you know what you are doing.) Set up the inci-

dent field using source intensity, source wavelength, source gauss width, source gauss center.

Default values of source wavelength = 600.0e-9 and source gauss width = 0.4e-15 give fre-

quency content of the incident field from 1 to 6 eV. (Note that source intensity does not

really affect the simulation in any way, as it is used for normalization anyway.)

(This you probably may want to change.) (In 3D) Set the incident field polarization using

src ieypol, src iexpol, src i45pol, src icircpol.

(This you definately need to change.) Set the total field / scattered field (TF / SF)

line (the position where the incident field originates from – loosely speaking) using (in 3D)

tfsf zpos or (in 2D) tfsf xpos. This line must lie outside the PML, and as a general rule try

to placeit at least 3 grid points away.

B. Output

There are 3 main types of output that can be calculated / displayed. These are field plots

(e.g. Fourier–transformed field profiles, etc), optical cross–sections (absorption, scattering,

and extinction), and transmission spectra (transmission, reflection, and absorption) – which

8

is used primarily for film calculations (e.g. hole arrays). All output is written to the /output/

directory in JFDTD.

C. Field Output

To set up field outputs the parameters noutput, output nplanes, (3D) output format[],

output field[], ft wavelengths[], (3D) output plane[], and (3D) output plane midpos[] are used

in the file “parameters”. The first parameter noutput specifies the number of outputs (of

each type of field) per simulation (e.g. if this is set to 3, then the desired fields will be output

at times 1/3, 2/3, and 3/3 of the simulation). The parameter output nplanes specifies the

number of different types of fields you want to output per simulation (e.g. Ex, Ey, ...).

In 3D the parameter output format[] the format of the output (*LEAVE THIS AT 1 –

GNUPLOT).

For each type of field that you want to output the following information must be spec-

ified (these parameters are arrays, so you specify field 1 in the position [1], 2 in [2] ...).

output field[] specifies the type of field (e.g. E2, Ex ...). If the field is a frequency dependent

field (which is obtained by Fourier–transforming) the paramater ft wavelengths[] specifies

the wavelength of transform. In 3D the plane (xy, xz, or yz) must be specified by using

output plane[] and output plane midpos[]. output plane[] specifies the constant plane (e.g.

this would be z for an xy–plane) and output plane midpos[] specifies the position of this

constant (e.g. the value of z). For multiple planes, it is important to specify the entire set

of information in order. For example, for 2 planes:

noutput = 3;

output nplanes = 2;

output format[1] = 1;

output field[1] = 5;

ft wavelengths[1] = 500.0e-9;

output plane[1] = 2;

output plane midpos[1] = 200.0e-9;

output format[2] = 1;

output field[2] = 2;

9

ft wavelengths[2] = 500.0e-9;

output plane[2] = 1;

output plane midpos[2] = 400.0e-9;

- Fields set for output with (output nplanes, etc) are output in the format: e field.a.b.c.d

(3D) or e field.a.b (2D) where a is the plane number (which goes from 1 to output nplanes),

b is the output number (which goes from 1 to noutput), and c and d are processor ranks.

(3D) These files need to be ”stitched” together by running filecombine (in the same directory

as e field.*). filecombine was compiled when using make. This program uses field stitch.dat

to stitch the files together.

- Transmission, reflection, and absorption spectra are output as spect transm.dat,

spect refl.dat, and spect abs.dat.

- Processor information is output in simfile.*

Cross sections are output in scatcs.dat, abscs.dat, extcs.dat.

V. PARAMETERS GLOSSARY

A. Simulation Parameters

(3D) mpi nxprocs, mpi nyprocs, mpi nzprocs : Number of processes in each dimension. Each

of these should be even, especially is syncronous MPI sends are used, otherwise a lockup

could occur.

(3D) isendtype: MPI communication type. *Do not change*

(3D) ixperiodic, iyperiodic, izperiodic; (2D) iperiodic: Periodicity in each directions. Note

that you cannot actually turn off the periodicity, if these flags are set to 0 then PML is

placed along the sides (3D) or top and bottom (2D) of the simulation box to simulate a

non-periodic system. *Do not turn z-periodicity off*

grid xsize, grid ysize, (3D) grid zsize: Grid sizes.

10

grid dx, grid dy, (3D) grid dz : Grid spacings.

cpml layers : Layers of CPML. 15-20 layers should be more than enough for most simulations.

cpml epsr, cpml mur : PML material.

cpml kappamax, cpml sigmamax coeff, cpml alphamax : CPML parameters. The default val-

ues should be optimum for most simulations.

cpml m, cpml ma: Polynomial grading of PML. The default values should be optimum for

most simulations.

time total : Simulation time. 100e-15 s is a good length of time to get accurate Fourier

transformed fields.

time courant factor : Multiplication factor for the maximum stable time step. This factor

must be ¡= 1 to be guarenteed a stable simulation (I have never had it become unstable at

0.95). The default values should be optimum for most simulations.

source intensity : Source intensity.

(3D) src ieypol, src iexpol, src i45pol, src icircpol : Source polarization.

source wavelength: Source wavelength of the sinusoidal part of the source.

source gauss width, source gauss center : Gaussian parameters of source. The center of the

pulse should be at a time so that is approximately 0 at t = 0 and t = time total.

(3D) tfsf zpos ; (2D) tfsf xpos : Total-field / scattered-field z(x)-position.

11

B. Output Parameters

isimfile: Flag to ouput processor simulation info. *LEAVE OFF FOR NOW*

noutput : Number of field outputs.

output nplanes : Number of different types of output planes.

(3D) output format[] : Format of output, e.g. gnuplot or OpenDX.

output field[] : Types of output planes.

ft wavelengths[] : Wavelengths of Fourier-transformed fields.

(3D) output plane[] : What plane (x, y, or z constant) to output if the format is gnuplot.

(3D) output plane midpos[] : Position of plane (x, y, or z constant) to output if the format

is gnuplot.

iscat calc: Flag to calculate cross sections.

scat xcenter, scat ycenter, and (3D) scat zcenter : Center of box used to calculate cross

section.

scat radius : Size (e.g. in x the box goes from scat xcenter-scat radius to

scat xcenter+scat radius) of cross section box.

itransm: Flag to calculate transmission spectrum.

spect transm pos, spect refl pos : z(x)–Positions to calculate the transmission and reflection

spectra.

12

spect npts, spect minwave, and spect maxwave: Wavelength range of transmission and re-

flection spectra.

VI. TROUBLESHOOTING / COMMON ISSUES

1. Program fails to begin and returns the error “killed”: This error occurs when

the machine(s) you are attempting to perform the simulation run out of memory. There

are a few ways to rectify this simulation. The first way is to decrease spect npts (if you are

using this feature). Increasing spect npts greatly increases the required memory. The second

(if possible) is to increase the number of processors that your are running on. Finally, (if

possible) decrease the grid sizes, or increase the grid spacing.

VII. CHANGELOG

A. Version 1.0 – Released xxx

• Initial launch of JFDTD2D/3D

B. Version 2.0 – Released xxx

• Structure definition moved from main .cpp file to separate file “structure.cpp” for definition

• Simulation parameters moved from main .cpp file to separate file “paramaters” for defini-

tion

C. Version 3.0 – Not released yet

• First full manual for provided

• Nonlocal (spatial dispersion) capability added

• Maxwell Stress Tensor (MST) capability added to JFDTD3D

• VTK / Paraview output format provided

• Error with isimfile and segmentation fault in JFDTD3D fixed

13

